Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Hull: ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Marine Policy
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improved traceability in seafood supply chains is achievable by minimising vulnerable nodes in processing and distribution networks

Authors: Hopkins, C. R.; Roberts, S. I.; Caveen, A. J.; Graham, C.; Burns, N. M.;

Improved traceability in seafood supply chains is achievable by minimising vulnerable nodes in processing and distribution networks

Abstract

Seafood is a globally traded commodity, often involving complex supply chains which have varying degrees of traceability. A robust traceability system for seafood supply chains enables the collection and communication of key information about catch and fisheries origins vital for assurance of the legality and sustainability of seafood products. End-to-end traceability is increasingly demanded by retailers, consumers, NGOs and regulatory bodies to ensure food safety, deter IUU fishing and verify sustainable and ethical credentials. Here, we map three UK seafood supply chains and evaluate traceability performance in: Dover sole landed in the south west of England, North-East Atlantic (NEA) mackerel landed at Peterhead, Scotland, and brown crab and European lobster, landed at Bridlington, England. Through a comparative analysis of traceability performance, this study suggests improvements to the technologies, processes, and systems for traceability in the seafood sector. The application of monitoring technologies and regulatory changes across the sector have increased traceability and potentially reduced instances of IUU fishing. While shorter supply chains are more likely to achieve end-to-end traceability, vulnerable nodes in processing and distribution networks may result in a loss of seafood traceability. While traceability systems may provide sustainability information on seafood, a high level of traceability performance does not necessarily equate to a sustainable source fishery. Encouragingly, while UK seafood supply chains are meeting minimum regulatory requirements for traceability, in the present study, many stakeholders have indicated ambitions towards traceability best practice in order to provide confidence and trust in the UK fishing industry.

Country
United Kingdom
Related Organizations
Keywords

Energy, Fisheries, Traceability, Supply chain, Environment and Sustainability, Seafood, Sustainability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
hybrid
Fields of Science
Fields of Science
Related to Research communities
Energy Research