
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of impactor shape on the deformation and energy absorption of closed cell aluminium foams under low velocity impact

The low-velocity impact response of closed-cell aluminium foams using various shaped indenters has been investigated. Impact tests were conducted using an instrumented drop-tower with flat, hemispherical, conical and truncated-conical indenter at impact energies ranging from 46.8 J to 105 J. The effects of variation of indenter shape and impact velocity on mechanical properties and deformation mechanisms of foam have been explicitly investigated. The results show that the mechanical response of closed-cell aluminium foams under low-velocity projectile impact significantly depends on the indenters' nose shape and initial impact energy. The deformation mechanisms of foam for different shaped indenters have been elucidated using reconstructed X-ray micro-computed tomography (XCT) images of the indented specimens. A good correlation between the indenter shape and deformation mechanisms has been observed. The structure-property relations of foams during dynamic indentation have also been explored by analysing the XCT images of the indented specimens. The parameters that influence the energy absorption capacity of the material are also presented.
- Khulna University of Engineering and Technology Bangladesh
- Australian National University Australia
- Khulna University of Engineering and Technology Bangladesh
- UNSW Sydney Australia
Closed-cell aluminium foam, Collapse mechanisms, Energy absorption, TA401-492, Indentation, Low-velocity impact, Materials of engineering and construction. Mechanics of materials
Closed-cell aluminium foam, Collapse mechanisms, Energy absorption, TA401-492, Indentation, Low-velocity impact, Materials of engineering and construction. Mechanics of materials
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
