Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Measurement Sensorsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Measurement Sensors
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Measurement Sensors
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the utility of partially corrupted flow measurement data arising from adjacent acoustic Doppler current profilers for energy yield assessment

Authors: Luke Evans; Ian Ashton; Brian Sellar;

On the utility of partially corrupted flow measurement data arising from adjacent acoustic Doppler current profilers for energy yield assessment

Abstract

Recommended practice for quantifying the energy resource at a tidal energy site requires the use of multiple instruments deployed across the site. However, the instruments used work by emitting an acoustic pulse and instruments working at the same time have the potential to interfere with each other through a process known as ’cross-talk’. It is important to understand the impact of cross-talk on measurements and how this can be managed and through data processing or suitable positioning of devices. The ReDAPT project conducted a measurement campaign using two Acoustic Doppler Current Profilers (ADCPs) placed upstream of an operational tidal turbine. This aimed to assess the ’in-line’ instrument placement guidelines from IEC 62600-200 for Power Performance Assessment (PPA) in real-world conditions. Consequently, the results within hold potential to support arguments for expanding these zones or adjusting their general dimensions. Despite adhering to industry standards and best practices to eliminate unreliable data in the Quality Control (QC) checks, in both concurrently measuring ADCPs at different time stamps in approximately 15 % of the returned data. This work identified for the first time interference throughout the campaign and quantified subsequent impact on estimates. A method to remove data anomalies caused by interference between closely positioned ADCPs has been developed and demonstrated, resulting in a 7 % variation in estimated Annual Energy Production (AEP). The algorithm effectively removed approximately 90 % of the corrupted measurements. Moving forward, multi-sensor deployments could use the algorithm described to double-check for interference within the data sets, although care should be taken to avoid this by choosing a suitable layout for deployment.

Keywords

Electric apparatus and materials. Electric circuits. Electric networks, Acoustic Doppler profiler, Energy yield, Tidal turbine, Tidal stream energy, Power curve, TK452-454.4, Power performance assessment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold