Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Measurementarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Measurement
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Model based insulation fault diagnosis for lithium-ion battery pack in electric vehicles

Authors: Yujie Wang; Jiaqiang Tian; Zonghai Chen; Xingtao Liu;

Model based insulation fault diagnosis for lithium-ion battery pack in electric vehicles

Abstract

Abstract The condition monitoring and fault diagnosis of the lithium-ion battery system are crucial issues for electric vehicles. The shocks, blows, twists, and vibrations during the electric vehicle driving process may cause the insulation fault. In order to ensure the safety of the drivers and passengers, a real-time monitor to detect the insulation state between the high voltage and ground is required. However, the conventional battery management system only provides very simple and coarse-grained measurements to detect the insulation resistance. In this work, a model-based insulation fault diagnosis method is proposed. Firstly, the equivalent circuit model for insulation fault diagnosis is established using a high-fidelity cell model. Then, the recursive least-squares method is employed to identify the model parameters. Considering the system nonlinear properties, measurement noise and unknown disturbance, the Kalman filter based state observer is designed for joint estimation of both the battery voltage and state-of-charge using the identified battery model. Finally, the positive and negative virtual insulation resistance are quantitatively assessed based on the prediction results of the state observer. Experiments under different loading profiles are performed to verify the proposed method.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 1%
Top 10%
Top 1%
bronze