
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An iterative model of the generalized Cauchy process for predicting the remaining useful life of lithium-ion batteries

handle: 11311/1195447
Abstract The degradation process of lithium-ion batteries has memory, i.e. it has long-range dependence (LRD). In this paper, an iterative model of the generalized Cauchy (GC) process with LRD characteristics is proposed for the remaining useful life (RUL) prediction of lithium-ion batteries. The GC process uses two independent parameters, fractal dimension and Hurst exponent, to measure the LRD of the degradation process. The diffusion term of the GC iterative model is replaced by the increment of the GC time sequences, constructed via the autocorrelation function (ACF) to describe uncertainty and the LRD characteristics of the lithium-ion batteries capacity degradation. Linear and nonlinear drift terms are used to explain the degradation trend of the lithium-ion batteries capacity. A comparison is made with fractional Brownian motion (FBM) and long-short-term memory (LSTM) network models to show how the GC iterative model has the best performance in RUL prediction of lithium-ion batteries.
[SPI]Engineering Sciences [physics], Lithium-ion batteries, Long-range dependence, Remaining useful life, Predictive maintenance, Generalized Cauchy iterative model, 510
[SPI]Engineering Sciences [physics], Lithium-ion batteries, Long-range dependence, Remaining useful life, Predictive maintenance, Generalized Cauchy iterative model, 510
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
