
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance evaluation on regeneration of high-salt solutions used in air conditioning systems by electrodialysis

Abstract Electrodialysis (ED) is an alternative to the conventional thermal regeneration of high-salt solutions used in air conditioning systems (ACSs). In this work, a simplified mathematical model was developed to describe the solute and water transport. The solute hydration number and free water content were proposed to characterize the solute hydration properties. A laboratory-scale ED regeneration system was set up to investigate the regeneration performance of three kinds of high-salt solutions (aqueous LiCl, LiBr and CaCl2 solutions) at various initial concentrations and current densities. The results demonstrate good agreement between numerical and experimental findings. The initial concentration and applied current density have great impacts on ED performance. Firstly, higher initial concentration generally results in lower membrane permselectivity, current efficiency, solute and water transfer rate, and higher energy consumption. Secondly, higher current density has a positive effect on solute and water transport but leads to more energy consumption. The solute hydration number and free water content both decrease with increasing initial concentration. The appropriate mass concentrations of 15%, 25% and 15% are respectively suggested for aqueous LiCl, LiBr and CaCl2 solutions when applying ED in ACSs to ensure responsible performance.
- Southeast University China (People's Republic of)
- Southeast University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
