
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters

pmid: 22770715
High activity levels and balanced anaerobic microbial communities are necessary to attain proper anaerobic digestion performance. Therefore, this work was focused on the kinetic performance and the microbial community structure of six full-scale anaerobic digesters and one lab-scale co-digester. Hydrolytic (0.6-3.5 g COD g(-1) VSS d(-1)) and methanogenic (0.01-0.84 g COD g(-1) VSS d(-1)) activities depended on the type of biomass, whereas no significant differences were observed among the acidogenic activities (1.5-2.2 g COD g(-1) VSS d(-1)). In most cases, the higher the hydrolytic and the methanogenic activity, the higher the Bacteroidetes and Archaea percentages, respectively, in the biomasses. Hydrogenotrophic methanogenic activity was always higher than acetoclastic methanogenic activity, and the highest values were achieved in those biomasses with lower percentages of Methanosaeta. In sum, the combination of molecular tools with activity tests seems to be essential for a better characterization of anaerobic biomasses.
- Wageningen University & Research Netherlands
- University of Santiago de Compostela Spain
start-up, methanogenic activity tests, water, Euryarchaeota, Microbiology, Bioreactors, trophic groups, Anaerobiosis, Biomass, hybridization, Bacteroidetes, bacterial communities, Archaea, in-situ detection, municipal solid-waste, sludge digester, hydrolysis
start-up, methanogenic activity tests, water, Euryarchaeota, Microbiology, Bioreactors, trophic groups, Anaerobiosis, Biomass, hybridization, Bacteroidetes, bacterial communities, Archaea, in-situ detection, municipal solid-waste, sludge digester, hydrolysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).186 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
