
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy

handle: 11541.2/136318
Abstract Conversion and utilization of solar energy is one of the most important strategies being proposed to mitigate the foreshadowed global energy crisis and environmental issues. Amongst the various solar energy conversion pathways, solar-thermal energy conversion is the most straightforward and efficient. Photothermal materials form the key platform for efficient light-to-heat conversion. The generated heat can be utilized to drive steam generation, which has recently attracted widespread and intense research interests due to its great potential to be a cost-effective and environmentally friendly technique for clean-water production. In recent years, extensive efforts have been devoted to improving the efficiency of solar steam generation. The exploration of photothermal materials with extremely high light-to-heat conversion efficiency as well as innovative evaporation configurations paved the way for eminent practical applications. In this article, the photothermal effect of different categories of light absorbing materials is reviewed and discussed. The applications of a series of representative photothermal materials for solar-steam generation are introduced and summarized in detail to reflect the state-of-the-art for solar evaporation. Finally, a brief discussion of the future research perspectives in this field are proposed.
- UNSW Sydney Australia
- University of South Australia Australia
- University of South Australia Australia
solar energy, clean water, photothermal materials, water evaporation, solar steam generation
solar energy, clean water, photothermal materials, water evaporation, solar steam generation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).328 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
