Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nano Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nano Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination

Authors: Di Giacomo, F.; Zardetto, V.; Lucarelli, G.; Cinà, L.; Di Carlo, A.; Creatore, M.; Brown, T. M.;

Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination

Abstract

Today poly and mono-crystalline silicon dominate the photovoltaic (PV) markets for outdoor applications. Nevertheless, there is a growing requirement for PV to be deployed in a wide variety of conditions from building-integrated, to portable electronics, to indoors for powering smart sensors, internet of things and homes. In this latter environment, other PV technologies such as amorphous silicon and dye sensitized solar cells have been the wide-spread choice to date for light harvesting. Here, we show that the perovskite solar cells (PSCs) we developed, in their mesoscopic form, incorporating both low temperature compact and mesoporous TiO2 layers, possess an outstanding combination of high power conversion efficiency (PCE) under both outdoor and indoor illumination conditions: i.e. PCE=15.9% (the highest for low temperature processed PSC in the mesoscopic form) under Standard Test Conditions (STC:1000 W/m2 with AM 1.5 Spectrum, 25 °C), and PCE=24% − 25.4% under indoor lighting (with a Maximum Power Density MPD=15.4 µW cm−2 at 200 lx and 32.6 µW cm−2 at 400 lx under compact fluorescent lamp). Our results demonstrate this technology to be exceptional for all-round performance, furthermore being manufactured via low-cost processing. These state-of-the-art high values were enabled by the development of high quality thin TiO2 layers deposited by atomic layer deposition (ALD). Furthermore, our investigation highlights the more stringent blocking behavior requirements of the compact layers under low-level light illumination compared to when the device has to operate under STC. Finally, the architecture and processes used were all carried out at low temperatures (T<150 °C) which enabled us to successfully transfer the design to plastic substrates.

Countries
Netherlands, Netherlands, Italy, Netherlands
Keywords

Indoor illumination, Sustainability and the Environment, Low temperature fabrication, 621, Perovskite solar cell, Light harvesting, Flexible solar cell, ALD, ALD; Flexible solar cell; Indoor illumination; Light harvesting; Low temperature fabrication; Perovskite solar cell; Renewable Energy, Sustainability and the Environment; Materials Science (all); Electrical and Electronic Engineering, Settore ING-INF/01 - ELETTRONICA, Renewable Energy, Materials Science (all), SDG 7 - Affordable and Clean Energy, Electrical and Electronic Engineering, SDG 7 – Betaalbare en schone energie

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 1%
Top 10%
Top 1%