
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Application of anammox within an integrated approach to sustainable food waste management and valorization

In this study, the anammox process was applied for the first time to the treatment of ammonium-rich liquid residues produced by the two-stage anaerobic digestion of food waste (2sAD-FW); such residues may represent a significant environmental issue if not properly managed. A granular anammox reactor was fed with a progressively increasing share of partially nitritated 2sAD-FW wastewater. An alternative operating strategy based on partial by-pass of the partial nitritation unit was tested, in order to regulate the influent NO2/NH4 molar ratio without chemical addition. High nitrogen removal efficiency (89 ± 1%) and negligible nitrite discharge rates were achieved, together with high nitrogen removal rate/nitrogen loading rate (NRR/NLR, 97 ± 1%) and stable specific anammox activity (0.42 ± 0.03 gN2-N/gVSS d). The observed NH4-removed/NO2-removed/NO3-produced molar ratio was in agreement with anammox stoichiometry, as confirmed by the low contribution (<5%) of denitrification to nitrogen removal. Moreover, the possibility of using digital color characterization of granular biomass as a novel, simple tool for the monitoring of anammox biomass enrichment and process performance was investigated under dynamic conditions, using real wastewater: changes in granule color correlated well with the increasing share of 2sAD-FW wastewater in the influent (R2 = 83%), as well as with the decrease of anammox biomass abundance in the reactor (R2 = 68%). The results suggest that anammox may be successfully integrated into a 2sAD-FW system, thus enhancing its environmental sustainability.
- National Research Council Italy
- University of Cagliari Italy
- Institute of Environmental Geology and Geoengineering Italy
- National Academies of Sciences, Engineering, and Medicine United States
- National Research Council United States
Ammonium; CIE-Lab; anaerobic digestion; anammox; food waste; sequencing batch reactor, Food waste, Wastewater, Refuse Disposal, Sequencing batch reactor, CIE-Lab, Anammox, Bioreactors, Waste Management, Anaerobic digestion, Ammonium Compounds, Biomass, Ammonium
Ammonium; CIE-Lab; anaerobic digestion; anammox; food waste; sequencing batch reactor, Food waste, Wastewater, Refuse Disposal, Sequencing batch reactor, CIE-Lab, Anammox, Bioreactors, Waste Management, Anaerobic digestion, Ammonium Compounds, Biomass, Ammonium
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
