Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao uBibliorum Repositor...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurocomputing
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization of neural network with wavelet transform and improved data selection using bat algorithm for short-term load forecasting

Authors: Bento, P.M.R.; Pombo, José Álvaro Nunes; Calado, M. Do Rosário; Mariano, S.;

Optimization of neural network with wavelet transform and improved data selection using bat algorithm for short-term load forecasting

Abstract

Abstract Short-term load forecasting is very important for reliable power system operation, even more so under electricity market deregulation and integration of renewable resources framework. This paper presents a new enhanced method for one day ahead load forecast, combing improved data selection and features extraction techniques (similar/recent day-based selection, correlation and wavelet analysis), which brings more “regularity” to the load time-series, an important precondition for the successful application of neural networks. A combination of Bat and Scaled Conjugate Gradient Algorithms is proposed to improve neural network learning capability. Another feature is the method's capacity to fine-tune neural network architecture and wavelet decomposition, for which there is no optimal paradigm. Numerical testing using the Portuguese national system load, and the regional (state) loads of New England and New York, revealed promising forecasting results in comparison with other state-of-the-art methods, therefore proving the effectiveness of the assembled methodology.

Country
Portugal
Keywords

Short-term load forecast, Artificial neural networks, Improved data selection, Features extraction, Wavelet transform, Bat algorithm

Powered by OpenAIRE graph
Found an issue? Give us feedback