
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Prediction of telephone calls load using Echo State Network with exogenous variables

We approach the problem of forecasting the load of incoming calls in a cell of a mobile network using Echo State Networks. With respect to previous approaches to the problem, we consider the inclusion of additional telephone records regarding the activity registered in the cell as exogenous variables, by investigating their usefulness in the forecasting task. Additionally, we analyze different methodologies for training the readout of the network, including two novel variants, namely ν-SVR and an elastic net penalty. Finally, we employ a genetic algorithm for both the tasks of tuning the parameters of the system and for selecting the optimal subset of most informative additional time-series to be considered as external inputs in the forecasting problem. We compare the performances with standard prediction models and we evaluate the results according to the specific properties of the considered time-series.
- Sapienza University of Rome Italy
- Ryerson University Canada
- Roma Tre University Italy
- Ryerson University Canada
Machine Learning, Computer Communication Networks, Neural Networks, Computer, Models, Theoretical, Time-series; forecasting; prediction; echo state network; genetic algorithm; exogenous variables; call data records, Algorithms, Cell Phone, Forecasting
Machine Learning, Computer Communication Networks, Neural Networks, Computer, Models, Theoretical, Time-series; forecasting; prediction; echo state network; genetic algorithm; exogenous variables; call data records, Algorithms, Cell Phone, Forecasting
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).74 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
