
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Swelling and optical properties of Si3N4 films irradiated in the electronic regime

Silicon nitride layers of 140 nm thickness were deposited on silicon wafers by low pressure chemical vapour deposition (LPCVD) and irradiated at GANIL with Pb ions of 110 MeV up to a maximum fluence of 4 x 10^13 cm-2. As shown in a previous work these irradiation conditions, characterized by a predominant electronic slowing-down (Se = 19.3 keV.nm-1), lead to damage creation and formation of etchable tracks in Si3N4. In the present study we investigated other radiation-induced effects like out of plane swelling and refractive index decrease. From profilometry, step heights as large as 50 nm were measured for samples irradiated at the highest fluences (> 10^13 cm-2). From optical spectroscopy, the minimum reflectivity of the target is shifted towards the high wavelengths at increasing fluences. These results evidence a concomitant decrease of density and refractive index in irradiated Si3N4. Additional measurements, performed by ellipsometry, are in full agreement with this interpretation.
Silicon nitride, optical properties, high energy, ion irradiation, [ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci], [PHYS.COND.CM-MS] Physics/Condensed Matter/Materials Science, [PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci], swelling, [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
Silicon nitride, optical properties, high energy, ion irradiation, [ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci], [PHYS.COND.CM-MS] Physics/Condensed Matter/Materials Science, [PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci], swelling, [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
