
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
ERO and PIC simulations of gross and net erosion of tungsten in the outer strike-point region of ASDEX Upgrade

We have modelled net and gross erosion of W in low-density L-mode plasmas in the low-field side strike point region of ASDEX Upgrade by ERO and Particle-in-Cell (PIC) simulations. The observed net-erosion peak at the strike point was mainly due to the light impurities present in the plasma while the noticeable net-deposition regions surrounding the erosion maximum could be attributed to the strong E ×B drift and the magnetic field bringing eroded particles from a distance of several meters towards the private flux region. Our results also imply that the role of cross-field diffusion is very small in the studied plasmas. The simulations indicate net/gross erosion ratio of 0.2–0.6, which is in line with the literature data and what was determined spectroscopically. The deviations from the estimates extracted from post-exposure ion-beam-analysis data (∼0.6–0.7) are most likely due to the measured re-deposition patterns showing the outcomes of multiple erosion-deposition cycles.
- Aix Marseille Université (La Timone) France
- Max Planck Institute of Neurobiology Germany
- Max Planck Society Germany
- Aix-Marseille University France
- VTT Technical Research Centre of Finland Finland
ta114, Cross-field diffusion, TK9001-9401, Tungsten erosion, PIC simulations, ERO modelling, Particle drifts, Nuclear engineering. Atomic power, SDG 7 - Affordable and Clean Energy, ASDEX Upgrade
ta114, Cross-field diffusion, TK9001-9401, Tungsten erosion, PIC simulations, ERO modelling, Particle drifts, Nuclear engineering. Atomic power, SDG 7 - Affordable and Clean Energy, ASDEX Upgrade
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
