
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Damage and deuterium retention of re-solidified tungsten following vertical displacement event-like heat load

AbstractSurface morphology and hydrogen isotope retention of W specimen melted with vertical displacement event-like heat load and subsequent deuterium (D) plasma exposure were studied. Applied heat loads using electron beam without raster scanning were about 190 and 230 MW/m2 in heat flux and 0.08, 0.12 and 0.16s in duration. After the heat load application, specimens showed apparent melting spots with grain growth or dense micrometer scale convex structure. Cracks were observed only in the part with the convex structure. D retention in the melted part of specimens was not significantly larger than in the reference specimen despite large changes of surface characteristics.
High heat flux, info:eu-repo/classification/ddc/333.7, TK9001-9401, Melting, Tungsten, NRA, Divertor, Retention, Nuclear engineering. Atomic power
High heat flux, info:eu-repo/classification/ddc/333.7, TK9001-9401, Melting, Tungsten, NRA, Divertor, Retention, Nuclear engineering. Atomic power
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
