
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Adhesion measurements for tungsten dust deposited on tungsten surfaces

AbstractThe first experimental determination of the pull-off force for tungsten dust adhered to tungsten surfaces is reported. Dust deposition is conducted with gas dynamics methods in a manner that mimics sticking as it occurs in the tokamak environment. Adhesion measurements are carried out with the electrostatic detachment method. The adhesion strength is systematically characterized for spherical micron dust of different sizes and planar surfaces of varying roughness. The experimental pull-off force is nearly two orders of magnitude smaller than the predictions of contact mechanics models, but in strong agreement with the Van der Waals formula. A theoretical interpretation is provided that invokes the effects of nanometer-scale surface roughness for stiff materials such as tungsten.
TK9001-9401, Nuclear engineering. Atomic power
TK9001-9401, Nuclear engineering. Atomic power
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
