
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Characterization and origin of large size dust particles produced in the Alcator C-Mod tokamak

Post mortem analyses of dust collected in Alcator C-Mod have highlighted a production of large size dust particles. The quantities of such large particles are higher than in any other tokamak. They are divided in two classes as a function of their shape and consequently, their origin. Rounded dust particles such as spheres and splashes constitute the first class. These particles are the result of high heat loads on various leading edges of plasma facing components and possibly, their melting during plasma operation. The heated or already molten material can be destabilized during disruptions and droplets are emitted across the vacuum chamber. After solidification, the resulting rounded particles are either in pure elements or in alloys. Flake-like dust particles, which are mainly due to light material coating delamination, constitute the second class of dust particles.
- CEA LETI France
- ITER France
- Centre national de la recherche scientifique Morocco
- Laboratoire Parole et Langage France
- Massachusetts Institute of Technology United States
Molybdenum, [PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph], [PHYS.PHYS.PHYS-PLASM-PH] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph], Alloy, TK9001-9401, Dust formation, Nuclear engineering. Atomic power, [ PHYS.PHYS.PHYS-PLASM-PH ] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph], Tungsten, Boron
Molybdenum, [PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph], [PHYS.PHYS.PHYS-PLASM-PH] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph], Alloy, TK9001-9401, Dust formation, Nuclear engineering. Atomic power, [ PHYS.PHYS.PHYS-PLASM-PH ] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph], Tungsten, Boron
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
