
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
HiperFer, a reduced activation ferritic steel tested for nuclear fusion applications

HiperFer, a reduced activation ferritic steel tested for nuclear fusion applications
Materials are the most urgent issue in nuclear fusion research. Besides tungsten, steels are considered for unifying functional and structural materials due to their cost and mechanical advantages over tungsten. However, the fusion neutrons impose a strong constraint on the ingredients of the steel in order to avoid long lasting activation, while the material has to pertain sputtering resistance, low hydrogen retention, and long-term mechanical stability. In this proof-of-principle, we demonstrate the interesting properties of the new material HiperFer (High performance Ferrite) as a material suitable for fusion applications.The investigation covers neutron activation modelled by FISPACT-II, plasma sputtering and deuterium retention experiments in PSI-2, thermo-mechanical properties and component modelling. The material was found to feature a low nuclear inventory. Its sputtering yield reduces due to preferential sputtering by a factor 4 over the PSI-2 D2 plasma exposure with possible reductions of up to 70 indicated by SD.Trim.SP5 modelling. The exposure temperature shows a strong influence on this reduction due to metal diffusion, affecting layers of 1 µm in PSI-2 at 1150 K exposure for 4 h. Deuterium retention in the ppm range was found under all conditions, together with ∼10 ppm C and N solubility of the ferritic material. The creep and cyclic fatigue resistance exceed the values of Eu-97 steel. As an all HiperFer component, heat loads in the order of 1.5 MW/m² could be tolerated using water-cooled monoblocks. In conclusion, the material solves several contradictions present with alternative reduced-activation steels, but its applications temperatures >820 K also introduce new engineering challenges. Keywords: Nuclear material, Steel, Activation, Plasma-facing material, Structural material, Nuclear fusion
- Helmholtz Association of German Research Centres Germany
- Forschungszentrum Jülich GmbH Germany
- Forschungszentrum Jülich Germany
info:eu-repo/classification/ddc/333.7, TK9001-9401, Nuclear engineering. Atomic power
info:eu-repo/classification/ddc/333.7, TK9001-9401, Nuclear engineering. Atomic power
1 Research products, page 1 of 1
- 2005IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
