
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Toroidal variation of the strike point in DIII-D

We report measurements of a+/− 5 mm toroidal variation of the outer strike point radial position using an array of three identical Langmuir probes distributed at 90° intervals around the torus (90°, 180°, 270°). The strike point radial location is determined from the profiles of floating potential (Vf) measured by the three 6 mm diameter domed Langmuir probes as the strike point is swept radially on a horizontal tile surface just outside of the upper small angle slot (SAS1) divertor. Based on the three probe measurements, the strike point variation is consistent with previous error field measurements by Schaffer [1,2] and estimates by Luxon [3] which indicated the strike point error could appear as an n = 1 radial variation of 4.5 mm at the outer mid plane and thus could be effectively described with a three point measurement. The results are also consistent with field line tracing calculations using the MAFOT code [4]. The small angle slot (SAS1) divertor performance is particularly sensitive to a misalignment with the divertor plasma since enhanced neutral confinement and recycling in the slot and distribution of neutrals along the slot surfaces are important for achieving divertor detachment at the lowest possible core plasma separatrix density. These strike point measurements are discussed with regard to the slot divertor alignment.
- Sandia National Laboratories United States
- Oak Ridge National Laboratory United States
- University of California, San Diego United States
- Sandia National Laboratories United States
- General Atomics (United States) United States
TK9001-9401, Nuclear engineering. Atomic power
TK9001-9401, Nuclear engineering. Atomic power
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
