
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Estimate of 3D power wall loads due to Neutral Beam Injection in EU DEMO ramp-up phase

Estimate of 3D power wall loads due to Neutral Beam Injection in EU DEMO ramp-up phase
Heating and current drive systems such as high energy Neutral Beam Injection (NBI) are being considered for pulsed EU DEMO ("DEMO1") pre-conceptual design. Their aim is to provide auxiliary power, not only during flat-top, but also during transient phases (i.e. plasma current ramp-up and ramp-down). In this work, NBI fast particle power loads on DEMO1 first wall, due to shine-through and orbit losses, are calculated for the diverted plasma ramp-up phase. Numerical simulations are performed using BBNBI and ASCOT Monte Carlo codes. The simulations have been done using a complete 3D wall geometry, and implementing the latest DEMO NBI design, which foresees NBI at 800 keV particle energy. Location and power density of NBI-related power loads at different ramp-up time steps are evaluated and compared with the maximum tolerable heat flux taken from ITER case. Since NBI shine-through losses (dominant during low density phases) depend mainly on the beam energy, plasma density and volume, DEMO has a more favourable situation than ITER, enlarging NBI operational window. Using ITER criteria, DEMO NBI at full energy and power could be switched on during ramp-up at ~ 1.3 × 1019 m-3. This increases the appeal of neutral beam injectors as auxiliary power systems for DEMO.
High-energy neutrals, Monte Carlo codes, Tokamak devices, Transient phasis, Particle beam injection, ta114, TK9001-9401, Monte Carlo methods, Plasma density, Neutral beam injection, Plasma current ramps, Particle beams, Current drive system, Neutral beam injectors, Conceptual design, Nuclear engineering. Atomic power, Operational windows, Heat flux
High-energy neutrals, Monte Carlo codes, Tokamak devices, Transient phasis, Particle beam injection, ta114, TK9001-9401, Monte Carlo methods, Plasma density, Neutral beam injection, Plasma current ramps, Particle beams, Current drive system, Neutral beam injectors, Conceptual design, Nuclear engineering. Atomic power, Operational windows, Heat flux
4 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
