
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings

handle: 20.500.14243/378919 , 10138/311964 , 11583/2986760 , 11577/3357346
The erosion, transport and deposition of tungsten in the outer divertor of JET-ILW has been studied for an HMode discharge with low frequency ELMs. For this specific case with an inter-ELM electron temperature at the strike point of about 20 eV, tungsten sputtering between ELMs is almost exclusively due to beryllium impurity and self-sputtering. However, during ELMs tungsten sputtering due to deuterium becomes important and even dominates. The amount of simulated local deposition of tungsten relative to the amount of sputtered tungsten in between ELMs is very high and reaches values of 99% for an electron density of 5E13 cm$^{-3}$ at the strike point and electron temperatures between 10 and 30 eV. Smaller deposition values are simulated with reduced electron density. The direction of the B-field significantly influences the local deposition and leads to a reduction if the E×B drift directs towards the scrape-off-layer. Also, the thermal force can reduce the tungsten deposition, however, an ion temperature gradient of about 0.1 eV/mm or larger is needed for a significant effect. The tungsten deposition simulated during ELMs reaches values of about 98% assuming ELM parameters according to free-streaming model. The measured WI emission profiles in between and within ELMs have been reproduced by the simulation. The contribution to the overall net tungsten erosion during ELMs is about 5 times larger than the one in between ELMs for the studied case. However, this is due to the rather low electron temperature in between ELMs, which leads to deuterium impact energies below the sputtering threshold for tungsten.
- University of Helsinki Finland
- University of Seville Spain
- TU Wien Austria
- Polytechnic University of Turin Italy
- TU Wien Austria
Erosion & Deposition, tungsten, JET-ILW, Erosion & Deposition; Tungsten; Sputtering; Impurity transport; JET-ILW, 530, Tungsten, Fusion, plasma och rymdfysik, erosion & deposition, info:eu-repo/classification/ddc/530, Impurity transport, ta114, Physics, Erosion & Deposition; Tungsten; Sputtering; Impurity transport; JET-ILW; PLASMA-WALL INTERACTION; SIMULATION; DEVICES; CODE, ddc:530, TK9001-9401, Sputtering, 624, simulation, Fusion, Plasma and Space Physics, jet-ilw, Physical sciences, impurity transport, Erosion & Deposition, code, Nuclear engineering. Atomic power, info:eu-repo/classification/ddc/624, sputtering, plasma-wall interaction, devices
Erosion & Deposition, tungsten, JET-ILW, Erosion & Deposition; Tungsten; Sputtering; Impurity transport; JET-ILW, 530, Tungsten, Fusion, plasma och rymdfysik, erosion & deposition, info:eu-repo/classification/ddc/530, Impurity transport, ta114, Physics, Erosion & Deposition; Tungsten; Sputtering; Impurity transport; JET-ILW; PLASMA-WALL INTERACTION; SIMULATION; DEVICES; CODE, ddc:530, TK9001-9401, Sputtering, 624, simulation, Fusion, Plasma and Space Physics, jet-ilw, Physical sciences, impurity transport, Erosion & Deposition, code, Nuclear engineering. Atomic power, info:eu-repo/classification/ddc/624, sputtering, plasma-wall interaction, devices
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
