
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Design of the Flowing LIquid Torus (FLIT)

Design of the Flowing LIquid Torus (FLIT)
The design of the Flowing LIquid Torus (FLIT) at Princeton Plasma Physics Laboratory (PPPL) is presented. FLIT will focus on the development of a liquid metal (LM) diagnostics and divertor system (without a plasma source) suitable for implementation in present-day fusion systems, such as NSTX-U. FLIT is intended to provide proof-of-concept for fast-flowing LM divertor designs for heat fluxes > 10 MW/m2. The toroidal test article (ID ≈ 0.56 m, OD ≈ 1.9 m, h ≈ 0.61 m) consists of 12 rectangular coils that can generate a centerline magnetic field of 1 T magnetic for greater than 10 s. Initially, 30 gallons Galinstan (Ga-In-Sn eutectic) will be recirculated within the test article using six jxB pumps to achieve flow velocities of up to 10 m/s across the fully annular radial test section. FLIT is designed to be a flexible machine that will allow experimental testing of various LM injection techniques, the study of flow instabilities, and electromagnetic control concepts to prove the feasibility of the LM divertors within fusion reactors.
- College of New Jersey United States
TK9001-9401, Nuclear engineering. Atomic power
TK9001-9401, Nuclear engineering. Atomic power
1 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
