
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimization of the snowflake divertor for power and particle exhaust on NSTX–U

In this paper, simple analytical modeling and numerical simulations performed with the multi-fluid edge transport code UEDGE are used to identify optimal snowflake divertor (SFD) configurations for heat flux mitigation and sufficient cryopumping performance on the National Spherical Torus eXperiment Upgrade (NSTX–U). A model is presented that describes the partitioning of sheath-limited SOL power and particle exhaust in the SFD as a result of diffusive transport to multiple activated strike points. The model is validated against UEDGE predictions and used to analyze a database of 70 SFD-minus equilibria. The optimal location for the entrance to a divertor cryopumping system on NSTX–U is computed for enabling sufficient pumping performance with acceptable power loading in a variety of SFD-minus configurations. UEDGE simulations of one promising equilibrium from the database indicate that a significant redistribution of power to the divertor legs occurs as a result of neutral particle removal near one of the SFD-minus strike points in the outboard scrape-off layer. It is concluded that pump placement at the optimal location is advantageous as the large number of compatible equilibria reduces the precision required of real-time SFD configuration control systems and enables acceptable divertor solutions even if UEDGE-predicted power redistribution slightly reduces the achievable pumping performance. Keywords: NSTX-U, snowflake divertor, cryopump, UEDGE
- College of New Jersey United States
TK9001-9401, Nuclear engineering. Atomic power
TK9001-9401, Nuclear engineering. Atomic power
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
