
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Liquid metal “divertorlets” concept for fusion reactors

A new, novel approach to liquid metal plasma facing components called “divertorlets” is presented and accompanied by experiments, simulations, and analysis. The development of a robust and reliable plasma facing component at the divertor is ongoing, with liquid metal divertor concepts gaining interest by showing promise for being able to handle higher heat fluxes as well as improve plasma performance through a reduction in particle recycling. The presented design in this work seeks to address challenges associated with evaporation, operation power, and liquid metal inventory. Divertorlets utilize many adjacent narrow channels with alternating vertical velocity that maintain large flow rates with small velocities at the surface by minimizing the flow path length. Preliminary results using a test stand on LMX-U at PPPL and simulations in COMSOL demonstrate the successful operation and the potential for divertorlets to remove large heat fluxes, with projections made to reactor scale showing the expected system performance.
- Princeton Plasma Physics Laboratory United States
- College of New Jersey United States
High heat flux, TK9001-9401, Flowing liquid metal, Lithium, Divertor, Low-recycling, Nuclear engineering. Atomic power, Divertorlets
High heat flux, TK9001-9401, Flowing liquid metal, Lithium, Divertor, Low-recycling, Nuclear engineering. Atomic power, Divertorlets
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
