Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Materials an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Materials and Energy
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Materials and Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Materials and Energy
Article . 2020
Data sources: VIRTA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Materials and Energy
Article . 2020
Data sources: VIRTA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Materials and Energy
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aaltodoc Publication Archive
Article . 2020 . Peer-reviewed
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ERO modelling of net and gross erosion of marker samples exposed to L-mode plasmas on ASDEX Upgrade

Authors: Keitaanranta, A.; Kumpulainen, Heikki; Lahtinen, Aapeli; Likonen, Jari; Balden, M.; Cavedon, M.; Krieger, K.; +5 Authors

ERO modelling of net and gross erosion of marker samples exposed to L-mode plasmas on ASDEX Upgrade

Abstract

In this paper, we report experimental and numerical investigations of gross and net erosion of gold (Au) and molybdenum (Mo), proxies for the common plasma-facing material tungsten (W), during L-mode plasma discharges in deuterium (D) in the outer strike-point region of the ASDEX Upgrade tokamak. To this end, erosion profiles of different marker spots (for Au, dimensions 1 × 1 and 5 × 5 mm2) and marker coatings (for Mo) have been determined and modelled using the ERO code. The smaller marker spots were designed to quantify the gross-erosion rate while on the bigger markers local prompt re-deposition of Au allowed obtaining data on net erosion. The experimental results indicate relatively uniform erosion profiles across the marker spots or coatings, very little re-deposition elsewhere, and the largest erosion taking place close to the strike point. Compared to W, the markers show up to 15 times higher net erosion but no major differences in the poloidal migration lengths of Au and W can be seen. Gold thus appears to be a proper choice for studying migration of W in the divertor region. The ERO simulations with different background plasmas are able to reproduce the main features of the experimental net erosion profile of Au. Of the studied parameters, electron temperature has the strongest impact on erosion: doubling the temperature enhances erosion by a factor of 2.5–3. In contrast, for Mo, the simulated net erosion is ~ 3 times smaller than what experimental data indicate. The discrepancies can be attributed to the deviations of the background plasma profiles from the measured ones as well as to the applied models or approximations for the ion temperature, plasma potential, and sheath characteristics in ERO. In addition, the surrounding areas of the marker samples being covered with impurities and W from previous experiments may have considerably reduced the actual re-deposition of Mo. All the simulations predict a toroidal tail of re-deposited particles, downstream of the markers, but the particle density seems to be below the experimental detection threshold. The comparison between the 1 × 1 mm2 and 5 × 5 mm2 marker spots further reveal that re-deposition drops from >50% to <40% when decreasing the marker size. This indicates that small enough marker samples can be used for accurately determining gross erosion in ASDEX Upgrade.

Country
Finland
Keywords

ta114, TK9001-9401, Material migration, Marker samples, Erosion, Nuclear engineering. Atomic power, L-mode, SDG 7 - Affordable and Clean Energy, ASDEX Upgrade

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold
Related to Research communities
Energy Research