
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Deuterium retention in tungsten fiber-reinforced tungsten composites

Deuterium retention in tungsten fiber-reinforced tungsten composites
In future fusion reactors, plasma-facing materials (PFMs) have to withstand unique conditions such as high temperatures, ion and neutron irradiation. Tungsten (W) has been established as main candidate material due to its favorable properties regarding the fusion environment but brings one major challenge: Its brittleness at moderate temperatures can lead to failure of tungsten components. Tungsten fiber-reinforced tungsten (Wf/W), a tungsten matrix containing drawn tungsten fibers, was developed to mitigate this problem by using extrinsic toughening mechanisms to achieve pseudo-ductility. The deuterium (D) retention in Wf/W manufactured by chemical vapor deposition (CVD) has been investigated using Wf/W single layered model systems consisting of a single plane of unidirectional tungsten fibers embedded in a tungsten matrix produced by CVD. Various parameters with potential influence on the D retention, such as the choice of an erbium oxide interface and potassium doping, have been included in the investigation. The samples have been ground to varying distances between surface and fiber plane - exposing distinct details of the Wf/W microstructures at the surface. The samples were exposed to a low temperature D plasma at 370 K for 72 h resulting in a total fluence of 1025 D/m2. The D retention of all samples was measured by nuclear reaction analysis (NRA) and thermal desorption spectroscopy (TDS). The D retention in Wf/W composites is higher than in reference samples made from hot-rolled W by factors between 2 and 5. In addition, a comparison of NRA and TDS data indicates that D penetrates faster into the depth of Wf/W material than into hot-rolled tungsten.
- Technical University of Munich Germany
- University of Maine United States
- University of Augsburg Germany
- Max Planck Society Germany
- Helmholtz Association of German Research Centres Germany
ddc:530, TK9001-9401, Nuclear engineering. Atomic power, info:eu-repo/classification/ddc/624, ddc: ddc:
ddc:530, TK9001-9401, Nuclear engineering. Atomic power, info:eu-repo/classification/ddc/624, ddc: ddc:
12 Research products, page 1 of 2
- 2012IsAmongTopNSimilarDocuments
- 1980IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
