
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of surface morphology on erosion of plasma-facing components in H-mode plasmas of ASDEX Upgrade


Hakola, Antti

Gouasmia, S.

Hakola, Antti

Gouasmia, S.

Pedroni, Matteo

Vassallo, E.
Net erosion of plasma-facing materials was investigated at the low-field-side (outer) strike-point area of the ASDEX Upgrade (AUG) divertor during H-mode discharges with small and frequent ELMs. To this end, Au andMo marker samples with different surface morphologies and geometries were exposed to plasmas using the DIMIIdivertor manipulator. The results were compared to existing erosion and deposition patterns from various LandH-mode experiments, in the latter case the main difference was the size and frequency of the ELMs.We noticed that increasing surface roughness reduces net erosion but less than what is the case in L-mode. Onthe other hand, net-erosion rates in H-mode are generally 2–5 times higher than the corresponding L-modevalues, in addition to which exposure in H-mode conditions results in strong local variations in the poloidal andtoroidal erosion/deposition profiles. The latter observation we associate with the large migration length, on theorder of several cm, of the eroded material, resulting in strong competition between erosion and re-depositionprocesses especially at poloidal distances > 50 mm from the strike point. Considerable net erosion wasmeasured throughout the analysed poloidal region unlike in L-mode where the main erosion peak occurs in thevicinity of the strike point. We attribute this qualitative difference to the slow decay lengths of the plasma fluxand electron temperature in the applied H-mode scenario.Both erosion and deposition require detailed analyses at the microscopic scale and the deposition patterns maybe drastically different for heavy and light impurities. Generally, the rougher the surface the more material willaccumulate on locally shadowed regions behind protruding surface features. However, rough surfaces alsoexhibit more non-uniformities in the quality or even integrity of marker coatings produced on them, thuscomplicating the analyses of the experimental data.We conclude that local plasma parameters have a huge impact on the PFC erosion rates and, besides incidentplasma flux, surface morphology and its temporal evolution have to be taken into account for quantitative estimatesof erosion rates and PFC lifetime under reactor-relevant conditions.
- Ruđer Bošković Institute Croatia
- Josef Stefan Institute Slovenia
- Institute for the Science and Technology of Plasmas Italy
- Teknologian tutkimuskeskus VTT Oy Finland
- Jožef Stefan International Postgraduate School Slovenia
H-mode, ta114, Marker samples, Erosion, Physics, TK9001-9401, Nuclear engineering. Atomic power, SDG 7 - Affordable and Clean Energy, ASDEX Upgrade, ta216, Material migration
H-mode, ta114, Marker samples, Erosion, Physics, TK9001-9401, Nuclear engineering. Atomic power, SDG 7 - Affordable and Clean Energy, ASDEX Upgrade, ta216, Material migration
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
