Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Materials an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Materials and Energy
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Materials and Energy
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigations on cold spray tungsten/tantalum coatings for plasma facing applications

Authors: R. Neu; H. Maier; B. Böswirth; S. Elgeti; H. Greuner; K. Hunger; J. Kondas; +1 Authors

Investigations on cold spray tungsten/tantalum coatings for plasma facing applications

Abstract

Cold gas spraying for the production of thick tungsten (W) coatings has been investigated for use at plasma facing components in fusion devices. Since the brittle nature of W strongly impedes its deposition, a systematic study was performed using mixtures of tungsten and tantalum (Ta) powders. Whereas the use of 100% W powder was not successful yet, 2 mm thick coatings on steel were produced by using a W/Ta powder mixture with 90 vol% W, yielding a W content in the coating of 70 vol%. The coatings show negligible porosity and very good adhesion to the substrate. High heat flux experiments on samples with the size 80 × 80 mm2 were performed in order to investigate the behaviour under low (≤4 MW/m2) steady state loads and high power (∼40 MW/m2) transients. During the pulses with low power density, being typical for applications at the main chamber first wall, no defects were observed and a thermal conductivity close to that of the bulk materials was found. During the high power transients lasting for 200 ms cracks parallel to the surface appeared inside the coating.

Keywords

High heat flux tests, Coatings, TK9001-9401, Nuclear engineering. Atomic power, Tungsten, Plasma wall interaction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold
Related to Research communities
Energy Research