
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Deuterium retention in displacement-damaged tungsten-rhenium alloys: Influence of rhenium concentration and irradiation temperature

Tungsten (W) samples containing 0, 1, 3, and 5 at.% rhenium (Re) were irradiated by 20 MeV W ions to 0.5 dpa at 290 K and to 0.3 dpa at 1350 K. An additional set of samples was irradiated to 0.5 dpa at 290 K and then annealed at 1350 K. The irradiated samples were exposed to a deuterium (D) plasma at 370 K. D concentration profiles in the samples were measured using D(He3,p)α nuclear reaction analysis. The D binding states in the defects were analysed using thermal desorption spectroscopy (TDS). In the case of irradiation at 290 K, the trapped D concentration monotonically increases with increasing Re concentration: in W-5%Re it is 17% higher than in pure W. On the contrary, for irradiation at 1350 K the trapped D concentration monotonically decreases with increasing Re concentration: in W-5%Re it is 50 times smaller than in pure W. In the case of annealing at 1350 K of the samples irradiated at 290 K, the Re presence yields only up to three times reduction of trapped D concentration compared with pure W. TDS shows that the nature of D trapping sites is different for the irradiations at 290 K and 1350 K. We attribute the reduced D trapping in W-Re alloys irradiated at 1350 K to the reduction of cavity growth caused by the presence of Re.
- Max Planck Society Germany
- Max Planck Institute of Neurobiology Germany
Rhenium, Ion irradiation, Deuterium retention, TK9001-9401, Nuclear engineering. Atomic power, Radiation defects, Tungsten
Rhenium, Ion irradiation, Deuterium retention, TK9001-9401, Nuclear engineering. Atomic power, Radiation defects, Tungsten
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
