Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Materials an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Materials and Energy
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Materials and Energy
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL AMU
Article . 2024
License: CC BY NC ND
Data sources: HAL AMU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-CEA
Article . 2024
License: CC BY NC ND
Data sources: HAL-CEA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Materials and Energy
Article . 2024 . Peer-reviewed
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://dx.doi.org/10.1016/j.nm...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wall conditions in WEST during operations with a new ITER grade, actively cooled divertor

Authors: Gallo, A.; Moreau, Ph.; Douai, D.; Alarcon, T.; Afonin, K.; Anzallo, V.; Bisson, R.; +23 Authors

Wall conditions in WEST during operations with a new ITER grade, actively cooled divertor

Abstract

Future fusion reactors like ITER and DEMO will have all-tungsten (W) walls and long pulses. These features will make wall conditioning more difficult than in most of the existing devices. The W Environment Steady-state Tokamak (WEST) is one of the few long pulse (364 s) fusion devices with actively cooled W plasma-facing components in the world. WEST is a unique test bed to study impurity migration and plasma density control via reactor relevant wall conditioning techniques. The phase II of WEST operations began in 2022, after the installation of a new lower divertor, now entirely equipped with actively cooled, ITER grade, W monoblocks. After pump down, we baked WEST between 90 °C and 170 °C for ∼2 weeks. After 82.5 h at 90 °C and 33 h at 170 °C, vacuum conditions were stable with a vessel pressure of 6x10-5 Pa and mass spectra dominated by H2 molecules. While at 170 °C, we performed ∼40 h of D2 glow discharge cleaning (GDC) and ∼5 h of glow discharge boronization (GDB), using a 15 %-85 % B2D6-He mix and a total boron mass of ∼12 g. This was the very first GDB at such high temperature for WEST. The whole wall conditioning sequence led to a ∼10 times reduction of the H2O signal as well as to a ∼3 times reduction of the O2 signal, according to mass spectra. Once back to 70 °C, the vessel pressure was 5.5x10-6 Pa and plasma restart was seamless with ∼30 s cumulated over the very first 5 pulses and an Ohmic radiated power fraction Frad = 0.6, showing successful conditioning of the new ITER grade divertor. The effect of the first, ‘hot’ GDB faded with a characteristic cumulative injected energy of 2.45 GJ and saturation towards Frad ∼0.8. After 1.4 h and 7.5 GJ of cumulative plasma time and injected energy, we carried out a second GDB, this time at 70 °C. This ‘cold’ GDB initially led to a much lower Ohmic Frad = 0.3–0.4 but the effect lasted ∼7 times less, with a characteristic cumulative injected energy of 0.37 GJ. At the end of the campaign, we cumulated ∼3h and ∼30 GJ through repetitive, minute long pulses without any boronization. Throughout this 4-weeks-long experiment, Frad in the 4 MW heating phase evolved only marginally (from 0.5 to 0.55). This increase is mostly due to the build-up of re/co-deposited layers on both lower divertor targets.

Country
France
Related Organizations
Keywords

[SPI] Engineering Sciences [physics], TK9001-9401, Nuclear engineering. Atomic power, SDG 7 - Affordable and Clean Energy, [PHYS] Physics [physics]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Green
gold
Related to Research communities
Energy Research