
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigating the effect of BT direction on W source-to-core pathways during the SAS-VW campaign on DIII-D

Experiments using the V-shaped closed slot tungsten (W) coated SAS-VW divertor in DIII-D studied the effects of the BT direction on core contamination of eroded tungsten from a closed slot divertor configuration. Core W content is inferred using soft-X ray tomography (SXR) and vacuum ultraviolet spectroscopy (SPRED), while W divertor erosion is inferred from visible spectroscopy of W emission (400.9 nm) measured by in-slot filterscopes (filtered photo-multipliers). Post-mortem analysis from the campaign discovered tile misalignment leading to suspected pronounced leading-edge erosion in the unfavorable BT direction (ion B→×∇B→ drift away from divertor) likely not captured by diagnostics. However, empirical findings show up to ∼ 2-3x larger core contamination in the favorable BT direction even considering no additional W erosion from leading edges. A “source-to-core efficiency factor” is derived to estimate the effects of leading-edge erosion and compare W contamination for two pairs of H-mode discharges in opposite BT directions. While having differing absolute parameters, similar core impurity density gradients suggest comparable core impurity transport. These results show that favorable BT may have stronger source-to-core pathways for W impurities sourced from the outer divertor region. Possible explanations could include the effects of E→×B→ drifts on W transport in the scrape-off-layer (SOL) as well as previously determined fast SOL inner target directed flows in favorable BT.
TK9001-9401, Nuclear engineering. Atomic power
TK9001-9401, Nuclear engineering. Atomic power
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
