
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Simulated temperature of a tungsten spot facing large plasma heat loads

In fusion devices like ITER, plasma-wall interactions are a significant concern due to the high heat fluxes, often tens of MW/m2, impacting the first wall. These intense heat fluxes can lead to the formation of hot spots on components facing the plasma, such as tungsten, used in divertor plates and antennas. This results in material erosion and plasma core contamination. Our study investigates the thermal behavior of tungsten surfaces under these conditions using fluid modeling and Particle-In-Cell (PIC) simulations. We examine the effects of thermionic electron emission on the sheath potential and heat transmission. The simulations reveal that thermionic emission can decrease the sheath voltage, increasing the surface temperature due to enhanced heat flux due to electrons. Additionally, we explore how the ratio between the spot size (S) and the surrounding surface length (Ly) influences the surface temperature. We find that a higher Ly/S ratio allows the surface to reach higher temperatures before the system enters the space-charge-limited regime, where thermionic current is maximized and considerably larger than the case where the entire surface is emissive (Ly=S).
[PHYS]Physics [physics], Thermionic current, TK9001-9401, Tungsten surface, Nuclear engineering. Atomic power, Space-charge-limited regime, PIC simulations
[PHYS]Physics [physics], Thermionic current, TK9001-9401, Tungsten surface, Nuclear engineering. Atomic power, Space-charge-limited regime, PIC simulations
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
