Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Engineering ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Engineering and Design
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nuclear Engineering and Design
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel multi-scale domain overlapping CFD/STH coupling methodology for multi-dimensional flows relevant to nuclear applications

Authors: Annalisa Manera; Timothy P. Grunloh;

A novel multi-scale domain overlapping CFD/STH coupling methodology for multi-dimensional flows relevant to nuclear applications

Abstract

Abstract A novel multi-scale domain overlapping coupling methodology designed to couple a computational fluid dynamics (CFD) code with a system thermal hydraulic (STH) code was developed and its performance was investigated. The methodology has been implemented in the coupling infrastructure code Janus, developed at the University of Michigan, providing methods for the on-the-fly data transfer through memory between the commercial CFD code STAR-CCM+ and the US NRC best-estimate thermal hydraulic system code TRACE. Coupling between these two software packages is motivated by the desire to extend the range of applicability of TRACE to scenarios in which local momentum and energy transfer are important, such as three-dimensional mixing of localized slugs of deborated or cold water in the downcomer and lower plenum of a reactor pressure vessel. The intra-fluid shear forces necessary to correctly capture these effects are neglected in the TRACE equations of motion, but are readily calculated from CFD solutions. CFD/STH coupling implementations therefore have applications in reactor transients such as boron dilution scenarios, Anticipated Transient Without SCRAM (ATWS) and Main Steam Line Break (MSLB). The proposed method is based on aliasing all spatial sources and sinks of momentum in the CFD domain as frictional losses in the system code domain. The internal velocity fields and, consequently, the inertial component of the pressure field are maintained consistent between the CFD and STH domains through a complementary velocity-matching interface. In this paper, coupled simulations are performed on Cartesian and cylindrical geometry with emphasis on consistency, convergence, and stability during transient scenarios. Results show that the presented domain overlapping coupling method is capable of adjusting pressure and velocity profiles of multi-dimensional system code solutions to match CFD solutions accurately. Important characteristics of transient simulations were found to include the background flow rate, specifically the stabilizing effect of viscous forces, as well as the time derivative of the flow rate. Under certain adverse conditions, the basic coupling method is found to produce unstable behavior. A stabilization method for adjusting CFD data is laid out and found to significantly improve the method’s performance under the most challenging conditions. Recommendations are laid out for further improving the coupling via advanced time stepping methods.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
hybrid