Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nuclear Engineering ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nuclear Engineering and Design
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Nuclear Engineering and Design
Article . 2019 . Peer-reviewed
http://dx.doi.org/10.1016/j.nu...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An overview of the AHFM-NRG formulations for the accurate prediction of turbulent flow and heat transfer in low-Prandtl number flows

Authors: Shams, Afaque; De Santis, Andrea; Roelofs, Ferry;

An overview of the AHFM-NRG formulations for the accurate prediction of turbulent flow and heat transfer in low-Prandtl number flows

Abstract

Abstract Turbulent heat transfer is a complex phenomenon, which is ubiquitous in engineering applications and has challenged turbulence modellers for several decades. In an attempt to simplify the problem it is often assumed that turbulent heat transfer can be inferred from the knowledge of the turbulent momentum transport, in what is known as the Reynolds analogy. This approach presents well-known drawbacks that limit its applicability to low-Prandtl fluids such as liquid metals. In an effort to overcome such limitations, an implicit Algebraic Heat Flux Model named AHFM-NRG has been recently proposed by the Nuclear Research and Consultancy Group (NRG). In the framework of the EU THINS project, this model was initially tested for a limited number of academic test cases in all three flow regimes (i.e.: natural, mixed and forced convection) and showed encouraging results. Further assessment and development of this or any other turbulent heat flux model with low-Prandtl fluids was hampered by the lack of accurate and reliable reference data. Thanks to the extensive reference database generated within the subsequent EU SESAME and MYRTE projects, the AHFM-NRG formulation has been further tested and developed. This article reports the development of the AHFM-NRG approach and its assessment against some representative test cases in all three flow regimes. It is shown that the AHFM-NRG formulations result in significant improvement with respect to the classical Reynolds analogy in all considered flow configurations.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%