Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Next Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Next Energy
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Next Energy
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Boosting anionic redox of TiS4 via Se anion doping for high-performance Al-ion batteries

Authors: Junfeng Li; Yunshan Zheng; Kwan San Hui; Kaixi Wang; Chenyang Zha; Sambasivam Sangaraju; Xi Fan; +3 Authors

Boosting anionic redox of TiS4 via Se anion doping for high-performance Al-ion batteries

Abstract

Aluminum-ion batteries (AIBs) are gaining attention for large-scale energy storage due to their low cost and high theoretical capacity. However, the existing cathode materials frequently encounter rapid capacity degradation and sluggish reaction kinetics due to the strong interaction with high-charge Al3+, which limits the utilization of AIBs. Here, the Se-doping strategy is proposed to facilitate the active participation of anions in charge compensation and enhance the anionic redox process of amorphous anion-rich TiS4. A refined amount of Se doping effectively improves reaction kinetics for Al-storage and stabilizes the structure of the material, preventing polysulfide dissolution under high dealumination states. As a result, amorphous TiS3.5Se0.5 delivers unprecedented Al3+ storage performance, with a stable capacity of 210mAhg−1 at 500 mA g−1 over 400 cycles. Through detailed characterization, we reveal that a-TiS3.5Se0.5 undergoes reversible Al3+ insertion, accompanied by anionic redox processes involving S22- and Sen- species, which lays the foundation for further development of anionic-redox-based cathodes for high-performance AIBs.

Keywords

TiS4-xSex-based electrode, Al-ion batteries, TJ807-830, HD9502-9502.5, Se-doping strategy, Anionic redox, Energy industries. Energy policy. Fuel trade, Renewable energy sources

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research