Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ocean Engineeringarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ocean Engineering
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental performance assessment of geometric hull designs for the E-Motions wave energy converter

Authors: D. Clemente; P. Rosa-Santos; F. Taveira-Pinto; P. Martins;

Experimental performance assessment of geometric hull designs for the E-Motions wave energy converter

Abstract

E-Motions is a low-cost and versatile/adaptable wave energy converter conceived towards harnessing energy from wave/wind-induced roll oscillations of floating platforms. This paper focuses on a recently conducted parametric physical modelling stage with three hull designs (half-cylinder, half-sphere and trapezoidal prism), which features a disruptive Power Take-Off reproduction. Free decay, inclining and free-fall tests denoted a good agreement between the physical model's properties and the estimates. Parametric regular waves tests yielded data regarding reflection and transmission coefficients, while large peak-to-peak roll amplitudes (nearly 80) were measured for the half-cylinder and, to a lesser extent, the half-sphere. Peak reduction was observed under resonant conditions, with the introduction of the Power Take-Off, to which adds a motion phase difference between it and the floating platform. On power output, the half-cylinder and half-sphere yielded the highest capture width ratios and power values per metre of device (nearly 0.8 kW/m, in prototype values) and per displaced volume (up to 0.08 kW/m3). Albeit sufficient for supporting some marine activities, these values can be bolstered, in the future, either through alternative mass/damping combinations or stacking various rows of generators. Maximum mean-to-max power ratios reached a value of 11, within the standard literature range, from literature.

Country
Portugal
Keywords

Ciências Tecnológicas, Ciências da engenharia e tecnologias, Ciências da engenharia e tecnologias, Engineering and technology, Technological sciences, Engineering and technology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
hybrid