
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigation of effect of thiophene-2-acetic acid as an electron anchoring group for a photovoltaic device

Abstract Different anchoring groups such as thiophene-2-acetic and malonic acid were investigated for synthesis of new photosensitizers. The new dyes (photosensitizers) were made pure and determined by various analytical techniques. The chemical structure of synthesized materials was certified by analytical studies. UV-Visible and fluorescence spectra revealed intense fluorescence and absorption for organic photosensitizers. The cyclic voltammetry results showed that the two photosensitizers were suitable for dye sensitized solar cell preparation. The work electrode was gathered using tin (IV) oxide nanoparticles in dye-sensitized solar cells structure. The new photosensitizers and tin (IV) oxide were used for photovoltaic devices preparation. The power conversion efficiency was obtained as about 4.12 and 4.29% for Dye 1 and Dye 2, respectively.
- University of Shahrood Iran (Islamic Republic of)
- Institute for Color Science and Technology Iran (Islamic Republic of)
- University of Shahrood Iran (Islamic Republic of)
- Institute for Color Science and Technology Iran (Islamic Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
