Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Particuologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Particuology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spouting behaviour of binary mixtures in square-based spouted beds

Authors: Cristina Moliner; Filippo Marchelli; Massimo Curti; Barbara Bosio; Giorgio Rovero; Elisabetta Arato;

Spouting behaviour of binary mixtures in square-based spouted beds

Abstract

Abstract From experiments, the influence of the physical characteristics of different binary mixtures of solids on the spouting regime of a pyramidal square-based spouted bed reactor is assessed. The applied methodology permits a more precise evaluation of the effects of the tested variables (diameter, density, sphericity) on the response variables (minimum air flows at which spouting begins and at which to maintain spouting conditions). The associated pressure drops along the bed of particles and the height of the formed fountain are analysed in each case. During the initial stages of fluidisation, binary mixtures containing different density ratios show dead zones. Segregation becomes more evident at large-size and high-density ratios. The lack of sphericity was found to be the main reason leading to blocking, channelling, and start-up problems when system failures occur. Nevertheless, the extent of segregation in all cases decreases with increasing the spouting velocity. In addition, a computational fluid dynamic model based on the discrete element method, previously validated for a single solid bed, is proposed as a tool to predict and evaluate potential segregation phenomena in binary mixtures. This model reproduced with high accuracy the encountered segregation phenomena. Its use may help define the technical limits inherent in the pyramidal spouted bed reactor.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
bronze