
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Elutriation, attrition and segregation in a conical spouted bed with a fountain confiner

Abstract This study examined elutriation, attrition, and segregation in a conical spouted bed with a fountain confiner and incorporating an open sided draft tube. Fine silica sand with a wide particle size distribution was employed as a model material, operating in both the batch and continuous modes. The use of a fountain confiner is crucial when operating with fine particles, because otherwise the bed rapidly exhibits significant entrainment. The extent of attrition was quantified using a tracing technique based on differently-coloured sand fractions as well as monitoring size distributions by sieving. Particle breakage was found to be the primary attrition mechanism, and the fountain confiner was determined to limit the elutriation of fine particles resulting from breakage. Consequently, only a small fraction of the finest particles were entrained from the bed. The incorporation of a confiner increased operational stability while reducing segregation, especially in the upper half of the bed where the majority of segregation typically occurs. Thus, the bed was perfectly mixed apart from very minimal segregation close to the wall and at the bottom of the contactor. These results provide a basis for the design and operation of larger scale equipment for the continuous drying of materials.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
