Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Energy a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Energy and Combustion Science
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DLR publication server
Other literature type . 2018
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advanced heat transfer fluids for direct molten salt line-focusing CSP plants

Authors: Bonk, Alexander; Sau, Salvatore; Uranga, Nerea; Hernaiz, Marta; Bauer, Thomas;

Advanced heat transfer fluids for direct molten salt line-focusing CSP plants

Abstract

Abstract Concentrating solar power coupled to thermal energy storage (TES) is a vastly growing industrial process allowing for the generation of dispatchable and green electricity. This paper focuses on direct molten salt line-focusing technology using linear Fresnel and parabolic trough collector systems. Direct molten salt technology utilizes molten salt as heat transfer fluid in solar field and TES medium. Nitrate salts can be applied since they cover a wide temperature range. As storage medium Solar Salt, a binary NaNO 3 − KNO 3 (60–40 wt%) mixture, is most commonly used but variations of this system have promising thermal properties in terms of a lower melting temperature to minimize the risk of undesired salt freezing events. These modified salts are typically ternary, ternary reciprocal or higher order systems formed by adding additional cations, anions or both. In this study five molten salt systems Solar Salt, HitecXL (CaKNa//NO3), LiNaK-Nitrate, Hitec (NaK//NO23) and CaLiNaK//NO23 are both investigated and critically reviewed. Their thermo-physical properties including phase diagrams, composition, melting ranges, melting temperature, minimum operation temperature, thermal stability, maximum operation temperature, density, heat capacity, thermal conductivity, viscosity and handling are evaluated and the most recommended values are discussed and highlighted. This review contributes to a better understanding of how the listed properties can be determined in terms of measurement conditions and provides temperature dependent data useful for future simulations of direct molten salt LF CSP plants.

Country
Germany
Keywords

Concentrating Solar Power Heat Transfer Fluids (HTF) Thermal Energy Storage (TES) Molten Nitrate Salts Review of thermo-pyhsical properties

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    196
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
196
Top 1%
Top 10%
Top 1%