Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DLR publication server
Other literature type . 2021
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Energy and Combustion Science
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Activation mechanisms in the catalyst coated membrane of PEM fuel cells

Authors: K. Andreas Friedrich; K. Andreas Friedrich; Kläre Christmann; Nada Zamel;

Activation mechanisms in the catalyst coated membrane of PEM fuel cells

Abstract

Abstract Polymer electrolyte membrane (PEM) fuel cells are a promising technology for automotive applications. To achieve the cost versus durability required for the commercialization of this technology, material production and its associated challenges have gained much interest. To reduce the production time per fuel cell stack, it is important to increase the number of units produced. A time-consuming step in the production of stacks is the activation, also known as break-in, which is necessary to carry out a subsequent factory-acceptance-test. The state-of-the-art studies found in literature are mainly tailored towards investigating various break-in procedures without taking into consideration the possible mechanisms behind the performance increase during the initial operation. This interconnection between break-in procedures and physical phenomena is hence missing. In this review, we describe the optimized state for the membrane and catalyst layer in regards to their morphology and composition. We compare this to the known state after production and discuss which mechanisms change the initial state. This information is then used to put into perspective the mechanisms that improve the cell performance and the time scale on which they will take place. Despite the high dependency of the activation behavior on the production steps and the material used, we can conclude that the main sluggish activation mechanisms for state-of-the-art CCMs are the removal of solvents from production and changes in the catalyst layer ionomer and at the membrane surface. Membrane bulk protonic conductivity and changes in platinum structure are expected to have a subordinate role in the activation process. High humidities or even liquid water in the cell and the cycling between oxidizing and reducing conditions at the electrodes accelerate the activation process. Thus, this review serves the development of “smart” and “fast” break-in procedures.

Country
Germany
Keywords

PEM fuel cell Break-in Membrane Catalyst layer Ionomer Production

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 1%