

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Nitrogen use efficiency, growth and physiological parameters in different tomato genotypes under high and low N fertilisation conditions

Identification of novel genotypes with enhanced nitrogen use efficiency (NUE) is a key challenge for a sustainable tomato production. In this respect, the performance of a panel of thirty tomato accessions were evaluated under high (HN; 5 mM N) and low (LN; 0.5 mM N) nitrogen irrigation solutions. For each treatment, when 50% of plants reached the first flower bud stage, plant growth and biomass traits, chlorophyll, flavonol and anthocyanin indexes, nitrogen balance index (NBI), C:N ratio in leaves, stems, and roots, and NUE were evaluated. Significant (p < 0.05) effects were observed for accession, N treatment, and their interaction across all the traits. Under LN, plants showed a delayed development (40 days for HN vs. 65 days for LN) and reduced growth and biomass. On average, LN condition led to 41.8% decrease in nitrogen uptake efficiency (NUpE) but also 189.0% increase in NUtE, resulting in 62.2% overall increase in NUE. A broad range of variation among accessions was observed under both HN and LN conditions. Under LN conditions, chlorophyll index and NBI decreased, while flavonol and anthocyanin indexes increased. Leaf C:N ratio was positively correlated with nitrogen utilisation efficiency (NUtE) in both N treatments. Multi-trait analyses identified top-performing accessions under each condition, allowing to identify one accession among top performers under both conditions. Correlation analysis revealed that high root biomass and leaf C:N ratio are useful markers for selecting high NUE accessions. These findings offer valuable insights for improving tomato NUE under varying nitrogen fertilization conditions and for breeding high-NUE cultivars.
Pigments, Chlorophyll, Nitrogen use efficiency, Genotype, Flavonols, Nitrogen, Tomato, C:N ratio, Anthocyanins, GENETICA, Plant Breeding, Solanum lycopersicum, Fertilization, Biomass, Selection
Pigments, Chlorophyll, Nitrogen use efficiency, Genotype, Flavonols, Nitrogen, Tomato, C:N ratio, Anthocyanins, GENETICA, Plant Breeding, Solanum lycopersicum, Fertilization, Biomass, Selection
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 34 download downloads 36 - 34views36downloads
Data source Views Downloads RiuNet 34 36


