Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Nuclear ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Nuclear Energy
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of flow rate transients on fission product activity in primary coolant of PWRs

Authors: M. Javed Iqbal; Nasir M. Mirza; Sikander M. Mirza;

Effect of flow rate transients on fission product activity in primary coolant of PWRs

Abstract

Abstract Simulations of fission product activity in primary circuits of a typical PWR under flow rate transients have been performed by using a two-stage model for release of fission products from fuel into coolant region. A one-dimensional nodal-scheme has been developed for modeling the behavior of fission products in the primary circuit. For constant-power operation at constant flow rate, results for 15 major fission products show that the activity due to fission products in the primary coolant circuit of PWRs is dominated by 133Xe and it is followed by 135Xe, 131MXe and 129Te which contribute 40%, 12.9%, 11% and 8.2%, respectively, to the total fission product activity. The results of these simulations have been found to agree well with the corresponding values found in ANS-18.1 Standard as well as with some available power-plant operation data. These simulations indicate a strong dependence of saturation values of specific activity on primary coolant flow rate. For pump coastdown having a characteristic time tp ∼ 2000 h, a 8.6% increase has been observed in the value of total specific activity due to fission products. For increasing tp values, the value of maximum specific activity due to fission products shows a rise followed by an approach towards a saturation value.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Top 10%
Average