
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Uniaxial compaction behaviour and elasticity of cohesive powders

Abstract The compression and compaction behaviour of bentonite, limestone and microcrystalline cellulose (MCC) — three cohesive powders widely used in industry were studied. Uniaxial compression was performed in a cylindrical die, 40 mm in diameter and 70 mm high, for three selected cohesive powder samples. The initial density, instantaneous density and tablet density were determined. The influence of maximum pressure and deformation rate was examined. The secant modulus of elasticity E sec was calculated as a function of deformation rate v, maximum pressure p and powder sample. After compaction experiments in hydraulic press at three pressures – p = 30, 45 and 60 MPa – and two different deformation rates, the strength of the produced tablets was examined in a material strength testing machine. From uniaxial compression tests performed on the universal testing machine for loading and unloading, the modulus of elasticity E was calculated on the basis of the first linear phase of unloading. The total elastic recovery of tablets was also obtained.
- Otto-von-Guericke University Magdeburg Germany
- Polish Academy of Learning Poland
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
