Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Powder Technology
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling, analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches

Authors: Elsayed, Khairy; Lacor, Christian;

Modeling, analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches

Abstract

Abstract The pressure drop is an important performance parameter to evaluate and design cyclone separators. In order to accurately predict the complex non linear relationships between pressure drop and geometrical dimensions, a radial basis neural network (RBFNN) is developed and employed to model the pressure drop for cyclone separators. The neural network has been trained and tested by experimental data available in literature. The result demonstrates that artificial neural networks can offer an alternative and powerful approach to model the cyclone pressure drop. Four mathematical models (Muschelknautz method “MM”, Stairmand, Ramachandran and Shepherd & Lapple) have been tested against the experimental values. The residual error (the difference between the experimental value and the model value) of the MM model is the lowest. The analysis indicates the significant effect of the vortex finder diameter Dx and the vortex finder length S, the inlet width b and the total height Ht. The response surface methodology has been used to fit a second order polynomial to the RBFNN. The second order polynomial has been used to get a new optimized cyclone for minimum pressure drop using the Nelder–Mead optimization technique. A comparison between the new design and the standard Stairmand design has been performed using CFD simulation. CFD results show that the new cyclone design is very close to the Stairmand high efficiency design in the geometrical parameter ratio, and superior for low pressure drop at nearly the same cut-off diameter. The new cyclone design results in nearly 75% of the pressure drop obtained by the old Stairmand design at the same volume flow rate.

Country
Belgium
Related Organizations
Keywords

cyclone separator, Optimization, Mathematical modelling, Radial basis function neural network (RBFNN), Cyclone geometry, Artificial neural networks (ANN)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    122
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
122
Top 1%
Top 10%
Top 10%