Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Powder Technology
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of wetting and drying process in a gas-solid fluidized bed by electrical capacitance tomography and pressure measurement

Authors: Zhang, J. L.; Mao, M. X.; Ye, J. M.; Wang, H. G.; Yang, Wuqiang;

Investigation of wetting and drying process in a gas-solid fluidized bed by electrical capacitance tomography and pressure measurement

Abstract

Abstract Top-spray configurations are widely used in pharmaceutical fluidized beds for particle coating and granulation. The process is complex due to the change of particle moisture as well as particle density. It is important to investigate the flow hydrodynamics in the process. In this paper, electrical capacitance tomography (ECT) combined with pressure transducers are used to investigate the flow hydrodynamics of gas-solids flow in a top-spray fluidized bed for wetting and drying. The flow characteristics investigated include bubble size, dominant frequency and standard deviation. Discrete wavelet transforms (DWT) and Fast Fourier Transform (FFT) are used to analyze the capacitance and pressure signals. The effects of key process parameters, including superficial velocity, particle size and spraying conduction on the flow hydrodynamics, are analyzed. The result indicates that both the material moisture and particle size influence the minimum fluidized velocity and bubble characteristics during the wetting and drying process. The result also indicates that the moisture content of particles and superficial fluidization velocity are two main factors, which determine the bubble characteristics in the top-spray process. The bubble size presents a complex trend, which is influenced by the spray pressure. The fluctuation frequency of bubbles presents a different trend in the wetting and drying stage.

Country
United Kingdom
Related Organizations
Keywords

Fluidized bed, Top spraying, Gas-solid flow, Electrical capacitance tomography

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%