
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Novel system for dynamic flowsheet simulation of solids processes

handle: 11420/3614
Novel system for dynamic flowsheet simulation of solids processes
Abstract The dynamic flowsheet simulation of solids processes is an area of increasing interest in recent years. Compared to the well-established flowsheet modelling of liquid-gas systems, the modelling of granular materials requires different approaches, strategies and algorithms. Therefore the new dynamic flowsheet simulation framework Dyssol has been developed within the Priority Program SPP 1679 “Dynamic simulation of interconnected solids processes (DYNSIM-FP)” of the German Research Foundation (DFG). In this contribution the architecture of the novel simulation framework and computational methods employed in it are presented. The system is based on the sequential-modular approach supplemented with partitioning and tearing methods. Waveform relaxation method, as well as several convergence methods and data extrapolation algorithms have been implemented to improve system performance and to increase convergence rate. To perform a correct calculation of multidimensional distributed parameters an approach with transformation matrices is used in the Dyssol system. Simulation case studies calculated with new system have shown good stability, convergence rate and agreement of simulation results with test systems and experimental results.
- Hamburg University of Technology Germany
Distributed parameters, Flowsheet simulation framework, Transformation matrix, Dynamic modelling, Solids processes
Distributed parameters, Flowsheet simulation framework, Transformation matrix, Dynamic modelling, Solids processes
2 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
