
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Application of the attainable region method to determine optimal conditions for milling and leaching

Abstract In this work, we apply the attainable region (AR) method to laboratory data in order to optimize the milling and leaching processes of a low grade gold ore. To date, no research has been published on the application of the AR optimization technique on combined milling and leaching processes. The advantage of the AR approach lies in its ability to simplify the optimization problem, as searching over a defined space for the maximum of an objective function is a fairly standard procedure. The objective function we selected in this investigation was that of optimizing a linear function of the value of the recovered material minus the cost of both milling and leaching. Using the three variables (milling time, leaching time and recovery), we constructed a 3D plot and used it to obtain all the possible recoveries from the different milling and leaching times. The optimum for our chosen objective was then found by overlaying a contour plot of the objective function on the 3D plot. Our results show that the optimum was obtained at 90% recovery with a profit value of $600, milling time of 30 min and a leaching time of 1750 min.
- University of South Africa South Africa
- University of South Africa South Africa
- University of the Witwatersrand South Africa
- Botswana International University of Science and Technology Botswana
- Botswana International University of Science and Technology Botswana
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
