Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Powder Technologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Powder Technology
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mixing performance of ribbon mixers: Effects of operational parameters

Authors: M. Halidan; M. Halidan; Aibing Yu; Aibing Yu; Kejun Dong; Kejun Dong; G.R. Chandratilleke;

Mixing performance of ribbon mixers: Effects of operational parameters

Abstract

Abstract Ribbon mixers are widely used in practice because they are capable of providing high speed convective mixing. Here, the discrete element method (DEM) is used to investigate the effects of impeller speed and fill level on the mixing behaviors of mixtures of particles with different cohesion in two-bladed and four-bladed ribbon mixers, each having a horizontal cylindrical vessel. The mixing behaviors are characterized by a particle-scale mixing index. Simulations show that the mixing rate increases with the impeller speed for both the cohesive and non-cohesive particle mixtures up to a certain speed, beyond which it shows a reduction. The mixing rate becomes poorer at higher impeller speeds for mixing of cohesive particles in the 2-bladed mixer. Inspection of velocity fields shows that many localized recirculation flows exist when the mixing non-cohesive particles, preventing the overall mixing. By contrast, when mixing cohesive particles, there exist circumferential flow about the shaft axis and convective flow in the horizontal axial direction, improving the particle mixing. The mixing rate deteriorated with an increase of the fill level in both the two-bladed and four-bladed mixers. The mixing rate of the particles is higher in the four-bladed mixer compared to the two-bladed mixer. With the increase of fill level, the particle flow changes successively from the sliding type of flow to recirculation flow and then to cascading flow for non-cohesive particles. The four-bladed mixer performs better for mixing at high fill levels and stronger cohesion, consolidating its advantage for mixing cohesive particles.

Related Organizations
Keywords

powder mixing, cohesion, mixing machinery, XXXXXX - Unknown, discrete element method, 551

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 1%
Top 10%
Top 10%