Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Powder Technologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Powder Technology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Visualization of flow conditions inside spiral jet mills with different nozzle numbers– Analysis of unloaded and loaded mills and correlation with grinding performance

Authors: Bartholomäus Luczak; Rolf Müller; Christian Kessel; Mathias Ulbricht; Heyko Jürgen Schultz;

Visualization of flow conditions inside spiral jet mills with different nozzle numbers– Analysis of unloaded and loaded mills and correlation with grinding performance

Abstract

Abstract Plenty of operational and geometric parameters have effects on spiral jet milling. Changes in the parameters cause distinctions in the flow conditions inside the mill and thereby also lead to consequences regarding the milled product. A new type of experimental spiral jet mill apparatus with almost entire optical accessibility enables a very convenient variation of the operational and geometric parameters as well as the determination of the flow conditions inside the spiral jet mill via non-invasive optical methods. Particle Image Velocimetry (PIV) measurements with diethylhexyl sebacat (DEHS) tracer droplets as well as solid barium sulphate micro particles were carried out to investigate the flow conditions inside the spiral jet mill. The differences between the net milling gas velocity fields and the velocity fields of loaded spiral jet mills were exposed. With the mill being loaded, the comminution zone decreases in the horizontal direction as well as decreases and deflects in the vertical direction. Besides, the analysis of the velocity fields inside the mill apparatus showed that decreasing milling nozzle numbers lead to increasing velocities inside the spiral jet mill, even if the mass flow rate of the gas supply is kept constant and the nozzle jet velocity is limited to sonic velocity at choked flow. With decreasing milling nozzle numbers, broader comminution zones and increasing lengths of the milling jets were investigated. As a consequence, a better grinding efficiency was expected and also confirmed with decreasing milling nozzle number by grinding experiments, as the new type of experimental apparatus was constructed in a fully operative way concerning the grinding ability.

Related Organizations
Keywords

Chemie

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%